منابع مشابه
Oxidatively generated damage to DNA at 5-methylcytosine mispairs.
Oxidatively generated damage to DNA has been implicated as causing mutations that lead to aging and disease. The one-electron oxidation of normal DNA leads to formation of a nucleobase radical cation that hops through the DNA until it is trapped irreversibly, primarily by reaction at guanine. It has been observed that 5-methylcytosine (C(m)) is a mutational "hot-spot". However, C(m) in a Watson...
متن کاملReplication-Associated Repair of Adenine:8-Oxoguanine Mispairs by MYH
Cellular DNA is constantly exposed to the risk of oxidation. 8-oxoguanine (8-oxoG) is one of the major DNA lesions generated by oxidation, which is primarily corrected by base excision repair. When it is not repaired prior to replication, replicative DNA polymerases yield misinsertion of an adenine (A) opposite the 8-oxoG on the template strand, generating an A:8-oxoG mispair. MYH, a mammalian ...
متن کاملSignaling from DNA mispairs to mismatch-repair excision sites despite intervening blockades.
Mismatch-repair (MMR) systems promote genomic stability by correction of DNA replication errors. Thus, MMR proteins--prokaryotic MutS and MutL homodimers or their MutSalpha and MutLalpha heterodimer homologs, plus accessory proteins--specifically couple mismatch recognition to nascent-DNA excision. In vivo excision-initiation signals--specific nicks in some prokaryotes, perhaps growing 3' ends ...
متن کاملMutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III
The mutY gene of Escherichia coli, which codes for an adenine glycosylase that excises the adenine of a G-A mispair, has been cloned and sequenced. The mutY gene codes for a protein of 350 amino acids (Mr = 39,123) and the clone genetically complements the mutY strain. The protein shows significant sequence homology to E. coli endonuclease III, an enzyme that has previously been shown to have g...
متن کاملThe effects of unnatural base pairs and mispairs on DNA duplex stability and solvation
In an effort to develop unnatural DNA base pairs we examined six pyridine-based nucleotides, d3MPy, d4MPy, d5MPy, d34DMPy, d35DMPy and d45DMPy. Each bears a pyridyl nucleobase scaffold but they are differentiated by methyl substitution, and were designed to vary both inter- and intra-strand packing within duplex DNA. The effects of the unnatural base pairs on duplex stability demonstrate that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1976
ISSN: 0028-0836,1476-4687
DOI: 10.1038/263369a0